

SFTI - working group 'Common API'

Basics

2018 Swiss Fintech Innovations www.sfti.ch

Authorship: Swiss FinTech Innovations

Release: Version 0.05

Date: 20.09.2018

Customer

WEB
Services

common API

FIs (e.g. banks,
insurances)
Retailer, ...

SFTI - working group 'Common API'

Basics Version 0.05

20.09.2018 2018 Swiss Fintech Innovations Seite 2/14

This API specification for automatically usable multi-company-capable banking and insurance APIs (hereinafter: Com-

mon API) was developed on behalf of Swiss Fintech Innovations (SFTI) for the Swiss banking and insurance industry.

The interface specification is protected by copyright. With regard to copyright protection, the "Common API" specifi-

cation is divided into two parts: On the one hand, it consists of documents that structure the specification as a whole

or hold basic conventions, and the documents containing the use case descriptions. On the other hand, the "Common

API" specification consists of files describing the APIs on a technical level.

The documents that make up the first category are licensed under the Creative Common license of the type "Attribu-

tion-NoDerivatives 4.0 International (CC BY-ND 4.0)". A copy of the License may be obtained at: https://creativecom-

mons.org/licenses/by-nd/4.0. This license allows others to redistribute the present work, both commercially and non-

commercially, as long as it is unmodified and complete and the original authors are named.

The documents that hold the technical specifications (YAML files) are licensed under the Apache License 2.0. These

technical specification files may not be used except in compliance with this license. A copy of the License may be ob-

tained at: http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, soft-

ware distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF

ANY KIND, either express or implied. See the license for the specific language governing permissions and limitations

under the license.

This document is available on the Internet at www.sfti.ch and at www.sksf.ch

Change Log

Version Date Author/s Comments

0.01 12.03.2018 Jürgen Petry (SFTI) Document creation

0.02 15.03.2018 Markus Emmenegger (Avaloq) , Dima Dimitrova (Avaloq), Ronny Fuchs (Finstar),

Tarmo Ploom (finnova), Patrick Schaller (RED-tec), JP (SFTI)

Review, adjustments

0.03 18.04.2018 Markus Emmenegger (Avaloq) , RF (Finstar), PS (RED-tec), JP (SFTI) Review, Adjustments

0.04 03.05.2018 Alexander Streule (Avaloq), Markus Emmenegger (Avaloq), Ronny Fuchs (Finstar), Pat-

rick Schaller (RED-tec), Jürgen Petry (SFTI)

Review, Adjustments

0.05 14.06.2018 Markus Emmenegger (Avaloq), Alexander Streule (Avaloq), Tarmo Ploom (Finnova),

Ronny Fuchs (Finstar), Patrick Schaller (RED-tec), Jürgen Petry (SFTI)

Review, Adjustments

About SFTI

Swiss Fintech Innovations (SFTI) is an independent association of Swiss financial institutions committed to drive collaboration and digital innovations

in the financial services industry. For more information about Swiss FinTech Innovations, please refer to http://www.sfti.ch.

http://www.sfti.ch/
http://www.sksf.ch/
http://www.sfti.ch/

SFTI - working group 'Common API'

Basics Version 0.05

20.09.2018 2018 Swiss Fintech Innovations Seite 3/14

Content

1. Preface .. 4

2. Basic Requirements.. 5

2.1 Technical API Architecture ... 5

2.2 Existing Standards ... 5

2.3 Respected directives .. 5

3. Conceptual Foundation ... 6

3.1 Banking .. 6

3.2 Insurance .. 7

4. Character Set .. 8

5. Application Layer: Guiding Principles .. 9

5.1 Versioning Concept ... 9

5.2 Location of Message Parameters ... 9

5.3 Interface Structure .. 9

5.4 Body Parameters Naming Conventions .. 10

5.5 Pagination .. 10

5.6 HTTP Response Codes ... 11

5.7 Additional/detailed error information ... 11

6. Appendix .. 13

6.1 Intro to API Versioning .. 13

SFTI - working group 'Common API'

Basics Version 0.05

12.03.2018/20.09.2018 2018 Swiss Fintech Innovations Seite 4/14

1. Preface

The present document contains the basic conventions of the API specification.1

In our work, we strive to make the best possible reference to existing API standards. In the

banking sector, the pan-European payments interoperability standards and harmonisation initi-

ative The Berlin Group (www.berlin-group.org)2 a strong contributor to such standards.

By examination of their API recommendations, it has been established that their concepts are of

good quality and form a good basis for our further work. So the SFTI working group decided to

integrate the respective results as foundation for their recommendations of an API standard.

This approach is closely coordinated with the responsible task force leaders at TBG for substan-

tive and legal reasons.

On the other hand and from a Swiss point of view, SIX provides a set of Swiss Implementation

Guidelines (e.g. for Customer-Bank Messages Credit Transfer/Payment Transactions) for the

ISO20022 standard. These guidelines form another important foundation for the corresponding

API specification.

1 This does not include security aspects, which are covered in detail by a separate document.

2 Hereinafter abbreviated by TBG.

https://www.berlin-group.org/

SFTI - working group 'Common API'

Basics Version 0.05

12.03.2018/20.09.2018 2018 Swiss Fintech Innovations Seite 5/14

2. Basic Requirements

2.1 Technical API Architecture

The API's interface architecture is based on representational state transfer (REST3). This decision

is motivated by the aim for fast performance, reliability and the ability to scale, against the

background of a state-of-the-art approach with a future-proofed perspective.

2.2 Existing Standards

The following protocols and API standards have been or shall be examined:

Name Business Segment(s) Syntax Links

TheBerlin Group payments json www.berlin-group.org

ISO20022 payments XML ISO_200224

FinTS/HBCI payments XML finTS

FIX stock exchange trading serialized ASCI Financial_Information_eXchange5

EBICS several XML EBICS6

Where it is useful and possible with reasonable effort, we will refer to the basic concepts of

these standards. Full compatibility with all these standards is not sought for reasons of complex-

ity.

Due to their legacy character, the following the SWIFT MT message protocol will not be recog-

nized:

The following API standards have been examined and will not be taken into further account due

to a lack of importance:

Name Business Segment(s) Syntax Links

OFX several -

open bank project several

2.3 Respected directives

The banking part of the API specification will respect the any directive which are issued by enti-

ties authorized to do so, e.g. issued by Swiss entities like EFD or finma. PSD2 is not explicitly

supported due to proven irrelevance for Switzerland and will also in the future only be supported

after necessity is proven.

3 German version: REST

4 German version: UNIFI_(ISO_20022)

5 German version: FIX-Protokoll

6 German version: EBICS

https://en.m.wikipedia.org/wiki/Representational_state_transfer
https://www.berlin-group.org/
https://en.m.wikipedia.org/wiki/ISO_20022
https://de.m.wikipedia.org/wiki/Financial_Transaction_Services
https://en.m.wikipedia.org/wiki/Financial_Information_eXchange
https://en.m.wikipedia.org/wiki/Electronic_Banking_Internet_Communication_Standard
https://de.m.wikipedia.org/wiki/Representational_State_Transfer
https://de.m.wikipedia.org/wiki/UNIFI_(ISO_20022)
https://de.m.wikipedia.org/wiki/FIX-Protokoll
https://de.m.wikipedia.org/wiki/Electronic_Banking_Internet_Communication_Standard

SFTI - working group 'Common API'

Basics Version 0.05

12.03.2018/20.09.2018 2018 Swiss Fintech Innovations Seite 6/14

3. Conceptual Foundation

3.1 Banking

This following sections provide an overview of the conceptual foundation of the Common API

Specification for Banking (CAPS).

3.1.1 CAPS Approach

To ease the design of the API Spec, an existing meta model for the definition of the business

domains was wanted. The choice of the spec team fell on BIAN, an organization which together

with the meta model it developed is described in the next section.

3.1.2 BIAN Essentials

The Banking Industry Architecture Network e.V. (BIAN) is an independent, member owned, not-

for-profit association to establish and promote a common architectural framework for enabling

banking interoperability. It was established in 2008.

The BIAN meta model has three elements that capture the design of the BIAN Service Landscape.

1. Business Area
This is the highest-level classification. A business area groups together a broad set of

business capabilities. For the BIAN Service Landscape they are defined to be aspects of

business activity that have similar supporting application and information-specific

needs.

2. Business Domain
At the next level, business domains define a coherent collection of capabilities within

the broader business area. In the BIAN Service Landscape the business domains are

associated with skills and knowledge recognizable in the banking business.

3. Service Domain
This is the finest level of partitioning, each defining unique and discrete business capa-

bilities. The Service Domains are the ‘elemental building blocks’ of a service landscape.

The Service Domain relates to generic capabilities that do not vary in their scope, but

the definitions of the Business Domain and Business Area are classifications that are

specific to a particular Service Landscape layout. The Service Landscape layout can be

varied depending on use.

3.1.3 Business Area overview

The following table shows the upper two layers of the BIAN meta model:

Business Area Business Domain

Reference Data Party

External Agency

Market data

Product Management

Sales & Services Channel Specific

Cross Channel

Marketing

Sales

Customer Mgmt.

Servicing

Operation & Execution Loans & Deposits

SFTI - working group 'Common API'

Basics Version 0.05

12.03.2018/20.09.2018 2018 Swiss Fintech Innovations Seite 7/14

Business Area Business Domain

Cards

Customer Services

Investment Mgmt.

Wholesale Trading

Market Operations

Trade Banking

Corp. Financing & Advisory Services

Cross Product Operations

Payments

Collateral Administration

Account Mgmt.

Operational Services

Risk & Compliance Bank Portfolio & Treasury

Models

Business Analysis

Regulations & Compliance

Business Support IT Mgmt.

Non IT & HR Enterprise Services

Buildings, Equipment and Facilities

Finance

Human Resource Mgmt.

Knowledge & IP Mgmt.

Corporate Relations

Business Direction

Document Mgmt. & Archive

3.2 Insurance

The overview of the conceptual foundation of the Common API Specification for Insurance will

be added to this document as soon as the work on this topic has started

SFTI - working group 'Common API'

Basics Version 0.05

12.03.2018/20.09.2018 2018 Swiss Fintech Innovations Seite 8/14

4. Character Set7

The character set is UTF 8 encoded. This specification is only using the basic data elements

“string”, “boolean”, "ISODateTime", "ISODate", "UUID" and “integer” and ISO based code lists

(with a byte length of 32 bytes).

Max35Text, Max70Text, Max140Text resp. Max512Text are defining strings with a maximum

length of 35, 70, 140 resp. 512 characters.

Banks and insurances will accept for strings at least the following character set:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

/ - ? : () . , ' +

Space

Banks and insurances may accept further character sets for text fields like names, addresses,

text. Corresponding information will be contained in the company's API documentation. Banks

and insurances might convert certain special characters of these further character sets, before

e.g. forwarding submitted data.

7 Based on section 2.1 of the Payment API Implementation Guidelines (Version 1.0) published by TBG.

https://docs.wixstatic.com/ugd/c2914b_17b40e2c8aaf4cefb4047b7cbd3a22a9.pdf

SFTI - working group 'Common API'

Basics Version 0.05

12.03.2018/20.09.2018 2018 Swiss Fintech Innovations Seite 9/14

5. Application Layer: Guiding Principles

5.1 Versioning Concept

As versioning concept for this Common API Specification, versioning through content nego-

tiation has been selected.8

REMINDER: This selection also affects section 5.3 Interface Structure of this document!

5.2 Location of Message Parameters9

The API definition follows the REST approach. This approach allows to transport message pa-

rameters at different levels:

• message parameters as part of the http level (http header)
• message parameters by defining the resource path (URL path information) with

additional query parameters and
• message parameters as part of the http body.

The content parameters in the corresponding http body will be encoded in JSON.

The following principle is applied when defining the API:

Message parameters as part of the http header:

• Definition of the content syntax
• Certificate and Signature Data where needed
• Customer identification data
• Protocol level data like Request Timestamps or Request/Transaction Identifiers

Message parameters as part of the path level:

• All data addressing a resource:
o provider identification,
o Service identification,
o Payment product identification,
o Account Information subtype identification,
o Resource ID,
o Additional information needed to process the request as process steering

flags or filtering information,

Message parameters as part of the http body:

• Business data content,
• Customer authentication data,
• Messaging Information
• Hyperlinks to steer the full counterpart/client – bank process

5.3 Interface Structure

The API is resource oriented. Resources can be addressed under the API endpoints10

https://{provider}/{service-endpoint}

using additional content parameters

{parameters}

where

• {provider}

8 Decision from workshop on Mai 4th, 2018, active since version 0.04 of this document.

9 Based on section 4.1 of the Payment API Implementation Guidelines (Version 1.0) published by TBG.

10 Versioning is not implemented through URI path, but through content negotiation, cf. section 6.1.

https://docs.wixstatic.com/ugd/c2914b_17b40e2c8aaf4cefb4047b7cbd3a22a9.pdf

SFTI - working group 'Common API'

Basics Version 0.05

12.03.2018/20.09.2018 2018 Swiss Fintech Innovations Seite 10/14

is the host of the API, which is not further mentioned

• {service}
has values as consents, payments, bulk-payments, standing-orders, accounts,

card-accounts or funds-confirmations, eventually extended by more information

on product types and request scope

• {parameters}
are content attributes encoded in JSON

URIs of service endpoints are made up by hyphenated pattern, e.g. /payments/sepa-

credit-transfer.

The structure of the request/response is described in the following in the categories

• Path:
Attributes encoded in the Path, e.g. “payments/sepa-credit-transfers” for {re-

source}

• Query Parameters:
Attributes added to the path after the ? sign as process steering flags or filtering

attributes for GET access methods

• Header:
Attributes encoded in the http header of request or response

• Request:
Attributes within the content parameter set of the request

• Response:
Attributes within the content parameter set of the response, defined in JSON

5.4 Body Parameters Naming Conventions11

The body parameters in JSON encoding are defined in LowerCamelCase syntax.

This also includes acronyms: No uppercase for standard acronyms, even if it may be less reada-

ble (e.g. the abbreviation for the International Bank Account Number, which is named iban

here).

5.5 Pagination

To support id-based pagination, the query parameter entryReferenceFrom can be added

to query strings. This data attribute indicates that the inquirer is in favour to get all objects after

the one with the given ID.12

Besides that, a _links section shall be added to the response of queries.13

11 In accordance with TBG conventions.

12 This pagination concept is aligned with TBG's account information API, transaction list.

13 In accordance with section 4.7 "API steering" of the Payment API Implementation Guidelines (Version 1.0) published

by TBG, containing first, next, previous and last links.

https://docs.wixstatic.com/ugd/c2914b_17b40e2c8aaf4cefb4047b7cbd3a22a9.pdf

SFTI - working group 'Common API'

Basics Version 0.05

12.03.2018/20.09.2018 2018 Swiss Fintech Innovations Seite 11/14

5.6 HTTP Response Codes

The Common API Specification lists only those error codes for which an implementer should be

prepared to handle for business reasons and which are closely linked to the business logic im-

plemented in the API.

Examples of business specific response codes for a request to delete a pending payment:

Status Code Standard HTTP Status Msg. Description

200 OK payment has been deleted

201 Created payment is marked for deletion

404 Not found payment does not exist

Highly standardized and technical error codes (e.g. 5xx server errors, security related codes, bad

request) need not be listed explicitly, because any implementer needs to do standard HTTP error

handling anyway.

Examples of technical response codes for a request to delete a pending payment:

Status Code Standard HTTP Status Msg.

400 Bad Request

401 Unauthorized

403 Forbidden

503 Service Unavailable

In general, the entire scope of existing http return codes14 should be supported by this API's

implementations.

5.7 Additional/detailed error information

With regard to the handling of additional/detailed error information, this specification refers to

methods described in RFC 7807 "Problem Details for HTTP APIs". For simplicity's sake, only two

examples are given here:

Example 1:

HTTP/1.1 403 Forbidden

 Content-Type: application/problem+json

 Content-Language: en

 {

 "type": "https://example.com/probs/out-of-credit",

 "title": "You do not have enough credit.",

 "detail": "Your current balance is 30, but that

costs 50.",

 "instance": "/account/12345/msgs/abc",

 "balance": 30,

 "accounts": ["/account/12345",

 "/account/67890"]

 }

14 As published by IANA in its HTTP Status Code Registry: http://www.iana.org/assignments/http-status-codes/http-sta-

tus-codes.xhtml

https://de.wikipedia.org/wiki/Internet_Assigned_Numbers_Authority
http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml

SFTI - working group 'Common API'

Basics Version 0.05

12.03.2018/20.09.2018 2018 Swiss Fintech Innovations Seite 12/14

Example 2:

 HTTP/1.1 400 Bad Request

 Content-Type: application/problem+json

 Content-Language: en

 {

 "type": "https://example.net/validation-error",

 "title": "Your request parameters didn't validate.",

 "invalid-params": [{

 "name": "age",

 "reason": "must be a positive

integer"

 },

 {

 "name": "color",

 "reason": "must be 'green',

'red' or 'blue'"}

]

 }

For a detailed description see tools.ietf.org/html/rfc7807.

https://tools.ietf.org/html/rfc7807

SFTI - working group 'Common API'

Basics Version 0.05

12.03.2018/20.09.2018 2018 Swiss Fintech Innovations Seite 13/14

6. Appendix

6.1 Intro to API Versioning

With regard to the implementation strategy, four different ways of versioning a REST API may

be distinguished:

 Versioning through URI Path

 Versioning through query parameters

 Versioning through custom headers

 Versioning through content negotiation

In the following sections, these ways are described in detail.15 Following this description, the

versioning selected for the Common API Specification is indicated.

6.1.1 Versioning through URI Path

One way to version a REST API is to include the version number in the URL path:16

 http://www.example.com/api/1/products

This solution often uses URI routing to point to a specific version of the API. Because cache keys

(in this situation URIs) are changed by version, clients can easily cache resources. When a new

version of the REST API is released, it is perceived as a new entry in the cache. This solution has

a pretty big footprint in the code base as introducing breaking changes implies branching the

entire API.

6.1.2 Versioning through query parameters

Another option for versioning a REST API is to include the version number as a query parameter:

 http://www.example.com/api/products?version=1

This is a straightforward way of versioning an API from an implementation point of view. It is

also easy to default to the latest version if a query parameter is not specified.

The main drawback comparing to the URI versioning is the difficulty of routing. Query parame-

ters are in fact more difficult to use for routing requests to the proper API version.

Versioning is a crucial part of API design that gives developers the freedom to refactor their code

and work on better representations for the resources of their API.

6.1.3 Versioning through custom headers

REST APIs can also be versioned by providing custom headers with the version number included

as an attribute:

 curl -H “Accepts-version: 1.0” http://www.example.com/api/products

The main difference between this approach and the two previous ones is that it doesn’t clutter

the URI with versioning information.

6.1.4 Versioning through content negotiation

The last strategy we are addressing is versioning through content negotiation:

 curl -H “Accept: application/vnd.xm.device+json; version=1” http://www.example.com/api/products

15 Source: https://www.xmatters.com/integrations/blog-four-rest-api-versioning-strategies (reference kindly provided by

Markus Emmenegger/Avaloq)

16 This strategy is used by companies such as Facebook, Twitter, Airbnb, and others.

https://www.xmatters.com/integrations/blog-four-rest-api-versioning-strategies

SFTI - working group 'Common API'

Basics Version 0.05

12.03.2018/20.09.2018 2018 Swiss Fintech Innovations Seite 14/14

This approach allows us to version a single resource representation instead of versioning the

entire API which gives us a more granular control over versioning. It also creates a smaller foot-

print in the code base as we don’t have to fork the entire application when creating a new

version. Another advantage of this approach is that it doesn’t require implementing URI routing

rules introduced by versioning through the URI path.

One of the drawbacks of this approach is that it is less accessible than URI-versioned APIs: Re-

quiring HTTP headers with media types makes it more difficult to test and explore the API using

a browser.

